Advertisements
Advertisements
Question
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Solution
We have, L.H.S. = `(sin x + sin 3x)/(cos x + cos 3x)`
= `(2sin ((x + 3x)/2) cos ((x - 3x)/2))/(2cos ((x + 3x)/2) cos ((x - 3x)/2)`
= `(2sin2xcos(-x))/(2cos2xcos(-x)`
= `(sin2x)/(cos2x)`
= tan2x = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.