Advertisements
Advertisements
Question
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
Solution
\[\text{ RHS }= m^2 + n^2 - 2\]
\[ = \left( \cos A + \sin B \right)^2 + \left( \sin A + \cos B \right)^2 - 2\]
\[ = \cos^2 A + \sin^2 B + 2\cos A\sin B + \sin^2 A + \cos {}^2 B + 2\sin A\cos B - 2\]
\[ = 1 + 1 + 2\cos A\sin B + 2\sin A\cos B - 2\]
\[ = 2\left( \cos A\sin B + \sin A \cos B \right)\]
\[ = 2\sin\left( A + B \right)\]
= LHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: tan 15°
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that
Prove that:
Prove that:
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the maximum value of 12 sin x − 9 sin2 x.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.