English

If sin (π cos x) = cos (π sin x), then sin 2x = ______. - Mathematics

Advertisements
Advertisements

Question

If sin (π cos x) = cos (π sin x), then sin 2x = ______.

Options

  • \[\pm \frac{3}{4}\]
     
  • \[\pm \frac{4}{3}\]
     
  • \[\pm \frac{1}{3}\]
     
  • None of these

MCQ
Fill in the Blanks

Solution

If sin (π cos x) = cos (π sin x), then sin 2x = `underlinebb(+- 3/4)`.

Explanation:

sin (π cos x) = cos (π sin x)

∵ sin θ = cos (90 - θ)

`=> cos (pi/2 - pi cos x) = cos (pi sin x)`

`=> pi/2 - pi cos x = pi sin x`

`=> pi/2 = pi (sin x + cos x)`

`=> cancel(pi)/2 = cancel(pi) (sin x + cos x)`

`=> sin x + cos x = 1/2`

Squaring on both sides,

`=> (sin x + cos x)^2 = 1/4`

`=> sin^2x + cos^2x + 2 sin x * cos x = 1/4`

`=> 1 + 2 sin x * cos x = 1/4      ...[sin^2x + cos^2x = 1]`

`=> sin 2x = 1/4 - 1`

⇒ sin 2x = `(- 3)/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 14 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

cos 4x = 1 – 8sinx cosx


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×