English

Write the Interval in Which the Value of 5 Cos X + 3 Cos ( X + π 3 ) + 3 Lies. - Mathematics

Advertisements
Advertisements

Question

Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 

Fill in the Blanks
Short Note

Solution

\[\text{ Let } f\left( x \right) = 5 \cos x + 3 \cos\left( x + \frac{\pi}{3} \right) + 3\]
\[ = 5 \cos x + 3(\cos x \cos60°- \sin x \sin60°) + 3\]
\[ = 5 \cos x + \frac{3}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3\] 
\[ = \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3\]
\[\text{ We know that }\]
\[ - \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2}\]
\[ - \sqrt{\frac{169}{4} + \frac{27}{4}} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\frac{169}{4} + \frac{27}{4}}\]
\[ \Rightarrow - \frac{14}{2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \frac{14}{2}\]
\[ \Rightarrow - 7 + 3 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3 \leq 7 + 3\]
\[\text{ Hence, f(x) lies in the interval } \left[ - 4, 10 \right] .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.3 | Q 6 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of: tan 15°


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If cot (α + β) = 0, sin (α + 2β) is equal to


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of tan3A - tan2A - tanA is equal to ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×