English

If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______. - Mathematics

Advertisements
Advertisements

Question

If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.

Options

  • `1/sqrt(10)`

  • `- 1/sqrt(10)`

  • `(-3)/sqrt(10)`

  • `3/sqrt(10)`

MCQ
Fill in the Blanks

Solution

If tanθ = 3 and θ lies in the third quadrant, then the value of sin θ `underline((-3)/sqrt(10))`.

Explanation:

tanθ = 3, θ lies in the third quadrant

∴ sinθ = `(-3)/sqrt(10)` where θ lies in third quadrant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 37 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If A + B = C, then write the value of tan A tan B tan C.


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


The value of tan 75° - cot 75° is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×