Advertisements
Advertisements
Question
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
Options
(a) \[\frac{\sqrt{3}}{4}\]
(b) \[\frac{\sqrt{3}}{2}\]
(c) \[\sqrt{3}\]
(d) 1
Solution
(c) \[\sqrt{3}\]
\[\tan20° + \tan40° + \sqrt{3}\tan20°\tan40°\]
\[ = \tan 60°(1 - \tan20°\tan40°) + \tan60°\tan20°\tan40° \left[ \text{ Using } \tan60° = \frac{\tan20 + \tan40}{1 - \tan20\tan40} \text{ and } \tan60° = \sqrt{3} \right]\]
\[ = \tan60° - \tan60°\tan20°tan40° + \tan60°\tan20°\tan40°\]
\[ = \tan60° \]
\[ = \sqrt{3}\]
APPEARS IN
RELATED QUESTIONS
Find the value of: sin 75°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that
Prove that:
Prove that:
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the maximum value of 12 sin x − 9 sin2 x.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
If sinθ + cosθ = 1, then find the general value of θ.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.