Advertisements
Advertisements
Question
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Solution
\[\text{ Given }:\]
\[\gamma = - \left[ \pi - (\alpha + \beta) \right]\]
\[\text{ Also }, \]
\[\lambda = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \left[ - (\pi - (\alpha + \beta) \right]}{\sin\alpha \sin\beta \cos( - (\pi - (\alpha + \beta))} \]
\[ = \frac{\sin^2 \alpha + \sin^2 \beta - (\sin(\alpha + \beta) )^2}{- (\sin\alpha \sin\beta\cos(\alpha + \beta))} \left[ \sin \left( \pi - \theta \right) = \sin \theta and \cos\left( \pi - \theta \right) = - \cos \theta \right]\]
\[ = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{- (\sin\alpha \sin\beta \cos\alpha \cos\beta - \sin^2 \alpha \sin^2 \beta)}\]
\[ = \frac{\sin^2 \alpha(1 - \cos^2 \beta) + \sin^2 \beta(1 - \cos^2 \alpha) - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]
\[ = \frac{2 \sin^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]
\[ = 2\]
APPEARS IN
RELATED QUESTIONS
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
Prove that:
Prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Show that sin 100° − sin 10° is positive.
Write the maximum value of 12 sin x − 9 sin2 x.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
tan 3A − tan 2A − tan A =
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of tan3A - tan2A - tanA is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.