English

Prove That: Tan 2 2 X − Tan 2 X 1 − Tan 2 2 X Tan 2 X = Tan 3 X Tan X - Mathematics

Advertisements
Advertisements

Question

Prove that:
tan22xtan2x1tan22xtan2x=tan3xtanx

Short Note

Solution

 LHS =tan22xtan2x1tan22xtan2x
=(tan2x+tanx)(tan2xtanx)1tan22xtan2x{ Using A2B2=(A+B)(AB)}
tan3x=tan(2x+x) and tanx=tan(2xx).
=tan3x(1tan2xtanx)×tanx(1+tan2xtanx)1tan22xtan2x[tan2x+tanx=tan3x(1tan2x\tanx)tan2x\tanx=\tanx(1+tan2x\tanx)]
=tan3xtanx(1tan22xtan2x)1tan22xtan2x
=tan3xtanx
= RHS 
Hence proved . 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 18 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following: cos(π4×x)cos(π4-y)-sin(π4- x)sin(π4 -y)= sin(x+y)


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

sinx- sinycosx+cosy=tan x-y2


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:

sin (A + B)

 


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A + B)


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
sin (A − B)


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
sin (A + B)


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
cos (A + B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


If tanA=mm1 and tanB=12m1, then prove that AB=π4.


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If sin (α + β) = 1 and sin (α − β) =12, where 0 ≤ α, βπ2, then find the values of tan (α + 2β) and tan (2α + β).


If sin α + sin β = a and cos α + cos β = b, show that

cos(α+β)=b2a2b2+a2

Prove that:

1sin(xa)cos(xb)=cot(xa)+tan(xb)cos(ab)

 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos (x+π3)+3 lies. 


If A + B = C, then write the value of tan A tan B tan C.


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If cosP=17 and cosQ=1314, where P and Q both are acute angles. Then, the value of P − Q is

 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


The maximum value of sin2(2π3+x)+sin2(2π3x) is


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


If tanA = 12, tanB = 13, then tan(2A + B) is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


Given x > 0, the values of f(x) = -3cos3+x+x2 lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + 3 tanθ tan2θ = 3, then θ = nπ3+π9


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.