Advertisements
Advertisements
Question
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
Options
1
2
3
4
Solution
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to 3.
Explanation:
Given that: tanA = `1/2`, tanB = `1/3`
tan2A = `(2tan"A")/(1 - tan^2"A")`
= `(2 xx 1/2)/(1 - (1/2)^2`
= `1/(1 - 4)`
= `1/(3/4)`
= `4/3`
So, tan2A = `4/3` and tanB = `1/3`
tan(2A + B) = `(tan 2"A" + tan "B")/(1 - tan 2"A" . tan "B")`
= `(4/3 + 1/3)/(1 - 4/3 xx 1/3)`
= `(5/3)/((9 - 4)/9)`
= `5/3 xx 9/5`
= 3
APPEARS IN
RELATED QUESTIONS
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that
Prove that
Prove that:
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If cot (α + β) = 0, sin (α + 2β) is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of tan 75° - cot 75° is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |