English

The value of tan 75° - cot 75° is equal to ______. - Mathematics

Advertisements
Advertisements

Question

The value of tan 75° - cot 75° is equal to ______.

Options

  • `2sqrt(3)`

  • `2 + sqrt(3)`

  • `2 - sqrt(3)`

  • 1

MCQ
Fill in the Blanks

Solution

The value of tan 75° – cot 75° is equal to `bbunderline(2sqrt(3))`.

Explanation:

The given expression is tan 75° − cot 75°

= `sin75^circ/cos75^circ  - cos75^circ/sin75^circ`

= `(sin^2 75^circ - cos^2 75^circ)/cos75^circ sin75^circ`

= `(2sin^2 75^circ - cos^2 75^circ)/(2 cos75^circ sin75^circ)`

= `(-2cos150^circ)/(sin150^circ)`

= `-2cot150^circ`

= `- 2 cot (180^circ - 30^circ)`

= `2cot30^circ`

= `2sqrt3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 38 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of: sin 75°


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If cot (α + β) = 0, sin (α + 2β) is equal to


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×