English

If Tan a = 3 4 , Cos B = 9 41 , Where π < a < 3 π 2 and 0 < B < π 2 , Find Tan (A + B). - Mathematics

Advertisements
Advertisements

Question

If tanA=34,cosB=941, where π < A < 3π2 and 0 < B <π2, find tan (A + B).

 

Answer in Brief

Solution

Given:
tanA=34 and cosB=941
 Here,π<A<3π2 and 0<B<π2.
That is, A is in third quadrant and B is in first qudrant . 
We know that tan function is positive in first and third quadrants, and in the first quadrant, \sine function is also positive . 
 Therefore, sinB=1cos2B
=1(941)2
=1811681
=16001681
=4041
 And tanB=sinBcosB
=4041941=409
Therefore, tan(A+B)=tanA+tanB1tanAtanB
=34+409134×409
=187368436
=18784

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 4 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  2sin2 π6+cosec2 7π6cos2 π3=32


Find the value of: tan 15°


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

sin5x+sin3xcos5x+cos3x=tan4x


Prove that: (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:

sin (A + B)

 


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
sin (A − B)


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:

sin(3π85)cos(π8+5)+cos(3π85)sin(π8+5)=1

 


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that: sin(A+B)+sin(AB)cos(A+B)+cos(AB)=tanA


Prove that:
sin(AB)cosAcosB+sin(BC)cosBcosC+sin(CA)cosCcosA=0

 


Prove that:

sin(AB)sinAsinB+sin(BC)sinBsinC+sin(CA)sinCsinA=0

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan(A+B)cot(AB)=tan2Atan2B1tan2Atan2B


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan A = x tan B, prove that
sin(AB)sin(A+B)=x1x+1


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Write the maximum value of 12 sin x − 9 sin2 x


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos (x+π3)+3 lies. 


If A + B = C, then write the value of tan A tan B tan C.


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If tan (A − B) = 1 and sec (A + B) = 23, the smallest positive value of B is

 

Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


If sin(x+y)sin(x-y)=a+ba-b, then show that tanxtany=ab [Hint: Use Componendo and Dividendo].


If tanθ = sinα-cosαsinα+cosα, then show that sinα + cosα = 2 cosθ.

[Hint: Express tanθ = tan(α-π4)θ=α-π4]


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.