Advertisements
Advertisements
Question
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Solution
\[\text{ LHS }= \cos^2 A + \cos^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = \cos^2 A + 1 - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos^2 A - \sin^2 B - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\cos\left( A - B \right) - 2\cos A \cos B \cos\left( A + B \right)\]
\[ = 1 + \cos\left( A + B \right)\left\{ \cos\left( A - B \right) - 2\cos A \cos B \right\}\]
\[ = 1 + \cos\left( A + B \right)\left( \cos A \cos B + \sin A \sin B - 2\cos A \cos B \right)\]
\[ = 1 + \cos\left( A + B \right)\left( - \cos A \cos B + \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\left( \cos A \cos B - \sin A \sin B \right)\]
\[ = 1 - \cos\left( A + B \right)\cos\left( A + B \right)\]
\[ = 1 - \cos^2 \left( A + B \right)\]
\[ = \sin^2 \left( A + B \right)\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that:
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Prove that:
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
The value of tan3A - tan2A - tanA is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.