English

If Tan θ = Sin α − Cos α Sin α + Cos α , Then Show that Sin α + Cos α = √ 2 Cos θ . - Mathematics

Advertisements
Advertisements

Question

If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].

Answer in Brief

Solution

\[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\]
Dividing numerator and denominator on the RHS by \[\cos\alpha\], we get 

\[\tan\theta = \frac{\frac{\sin\alpha}{\cos\alpha} - 1}{\frac{\sin\alpha}{\cos\alpha} + 1}\]

\[ \Rightarrow \tan\theta = \frac{\tan\alpha - \tan\frac{\pi}{4}}{1 + \tan\alpha \tan\frac{\pi}{4}}\]

\[ \Rightarrow \tan\theta = \tan\left( \alpha - \frac{\pi}{4} \right)\]

\[ \Rightarrow \theta = \alpha - \frac{\pi}{4}\]

\[\text{ Or }\alpha = \frac{\pi}{4} + \theta\]
Now,
\[\sin\alpha + \cos\alpha\]
\[ = \sin\left( \frac{\pi}{4} + \theta \right) + \cos\left( \frac{\pi}{4} + \theta \right)\]
\[ = \sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta + \cos\frac{\pi}{4}\cos\theta - \sin\frac{\pi}{4}\sin\theta\]
\[ = \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta\]
\[ = \frac{2}{\sqrt{2}}\cos\theta\]
\[ = \sqrt{2}\cos\theta\]
\[\therefore \sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 33 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Write the maximum value of 12 sin x − 9 sin2 x


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If cot (α + β) = 0, sin (α + 2β) is equal to


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If cotθ + tanθ = 2cosecθ, then find the general value of θ.


The value of tan3A - tan2A - tanA is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×