Advertisements
Advertisements
प्रश्न
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
उत्तर
\[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\]
Dividing numerator and denominator on the RHS by \[\cos\alpha\], we get
\[\tan\theta = \frac{\frac{\sin\alpha}{\cos\alpha} - 1}{\frac{\sin\alpha}{\cos\alpha} + 1}\]
\[ \Rightarrow \tan\theta = \frac{\tan\alpha - \tan\frac{\pi}{4}}{1 + \tan\alpha \tan\frac{\pi}{4}}\]
\[ \Rightarrow \tan\theta = \tan\left( \alpha - \frac{\pi}{4} \right)\]
\[ \Rightarrow \theta = \alpha - \frac{\pi}{4}\]
\[\text{ Or }\alpha = \frac{\pi}{4} + \theta\]
Now,
\[\sin\alpha + \cos\alpha\]
\[ = \sin\left( \frac{\pi}{4} + \theta \right) + \cos\left( \frac{\pi}{4} + \theta \right)\]
\[ = \sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta + \cos\frac{\pi}{4}\cos\theta - \sin\frac{\pi}{4}\sin\theta\]
\[ = \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta\]
\[ = \frac{2}{\sqrt{2}}\cos\theta\]
\[ = \sqrt{2}\cos\theta\]
\[\therefore \sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\]
APPEARS IN
संबंधित प्रश्न
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If sin α + sin β = a and cos α + cos β = b, show that
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If A + B = C, then write the value of tan A tan B tan C.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
tan 3A − tan 2A − tan A =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If sinx + cosx = a, then sin6x + cos6x = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.