मराठी

Tan 3a − Tan 2a − Tan a = - Mathematics

Advertisements
Advertisements

प्रश्न

tan 3A − tan 2A − tan A =

पर्याय

  •  tan 3 A tan 2 A tan A

  • −tan 3 A tan 2 A tan A

  •  tan A tan 2 A − tan 2 A tan 3 A − tan 3 A tan A

  • None of these

MCQ

उत्तर

 tan 3 A tan 2 A tan A
\[3A = 2A + A\]
\[ \Rightarrow \tan 3 A = \tan(2A + A)\]
\[ = \frac{\tan2A + \tan A}{1 - \tan2A\tan A}\]
\[ \Rightarrow \tan 3A - \tan3A \tan2A \tan A = \tan 2A + \tan A\]
\[ \Rightarrow \tan 3A - \tan 2A - \tan A = \tan3A \tan2A \tan A\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 7 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If sinθ + cosθ = 1, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinx + cosx = a, then sin6x + cos6x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×