मराठी

If Sin a = 1 2 , Cos B = √ 3 2 , Where π 2 < a < π and 0 < B < π 2 , Find the Following: Tan (A + B) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)

थोडक्यात उत्तर

उत्तर

\[\text{ Given: }\sin A = \frac{1}{2}\text{ and }\cos B = \frac{\sqrt{3}}{2}\]
\[\text{ Here,} \frac{\pi}{2} < A < \pi\text{ and }0 < B < \frac{\pi}{2} . \]
That is, A is in thesecond quadrant and B is in the first quadrant .
We know that in the second quadrant, sine function is positive and cosine and tan functions are negative
In the first quadrant, all T - functions are positive . 
Therefore,
\[\cos A = - \sqrt{1 - \sin^2 A} = - \sqrt{1 - \left( \frac{1}{2} \right)^2} = - \sqrt{1 - \frac{1}{4}} = - \sqrt{\frac{3}{4}} = \frac{- \sqrt{3}}{2}\]
\[\tan A = \frac{\sin A}{\cos A} = \frac{\frac{1}{2}}{\frac{- \sqrt{3}}{2}} = \frac{- 1}{\sqrt{3}}\]
\[\sin B = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left( \frac{\sqrt{3}}{2} \right)^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\]
\[\tan B = \frac{\sin B}{\cos B} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}\]
Now, 
\[ \tan\left( A + B \right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ = \frac{\frac{- 1}{\sqrt{3}} + \frac{1}{\sqrt{3}}}{1 - \frac{- 1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}}\]
\[ = \frac{0}{1 + \frac{1}{3}} = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 6.1 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


If sinθ + cosθ = 1, then find the general value of θ.


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


The value of tan 75° - cot 75° is equal to ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×