Advertisements
Advertisements
प्रश्न
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
उत्तर
\[\text{ Given: }\sin A = \frac{1}{2}\text{ and }\cos B = \frac{\sqrt{3}}{2}\]
\[\text{ Here,} \frac{\pi}{2} < A < \pi\text{ and }0 < B < \frac{\pi}{2} . \]
That is, A is in thesecond quadrant and B is in the first quadrant .
We know that in the second quadrant, sine function is positive and cosine and tan functions are negative
In the first quadrant, all T - functions are positive .
Therefore,
\[\cos A = - \sqrt{1 - \sin^2 A} = - \sqrt{1 - \left( \frac{1}{2} \right)^2} = - \sqrt{1 - \frac{1}{4}} = - \sqrt{\frac{3}{4}} = \frac{- \sqrt{3}}{2}\]
\[\tan A = \frac{\sin A}{\cos A} = \frac{\frac{1}{2}}{\frac{- \sqrt{3}}{2}} = \frac{- 1}{\sqrt{3}}\]
\[\sin B = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left( \frac{\sqrt{3}}{2} \right)^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\]
\[\tan B = \frac{\sin B}{\cos B} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}\]
Now,
\[ \tan\left( A + B \right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ = \frac{\frac{- 1}{\sqrt{3}} + \frac{1}{\sqrt{3}}}{1 - \frac{- 1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}}\]
\[ = \frac{0}{1 + \frac{1}{3}} = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: tan 15°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB