हिंदी

If tanθ = sinα-cosαsinα+cosα, then show that sinα + cosα = 2 cosθ. [Hint: Express tanθ = tan(α-π4)θ=α-π4] - Mathematics

Advertisements
Advertisements

प्रश्न

If tanθ = sinα-cosαsinα+cosα, then show that sinα + cosα = 2 cosθ.

[Hint: Express tanθ = tan(α-π4)θ=α-π4]

प्रमेय

उत्तर

Given that: tanθ = sinα-cosαsinα+cosα

⇒ tanθ = tanα-1tanα+1

= tanα-tan π41+tan π4 tanα 

⇒ tanθ = tan(α-π4)

∴  θ =  α-π4

⇒ cosθ = cos(α-π4)

⇒ cosθ = cosαcos π4+sinαsin π4

⇒ cosθ = cosα.12+sinα.12

2cosθ = cosα + sinα

⇒ sinα + cosα = 2cosθ

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 14 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following:

cos(3π4+x)-cos(3π4-x)=-2sinx


Prove the following:

sin5x+sin3xcos5x+cos3x=tan4x


Prove the following:

sinx- sinycosx+cosy=tan x-y2


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
sin (A − B)


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A − B)


If sinA=12,cosB=1213, where π2< A < π and 3π2 < B < 2π, find tan (A − B).


Prove that

cos9+sin9cos9sin9=tan54

Prove that

cos8sin8cos8+sin8=tan37

Prove that: sin(A+B)+sin(AB)cos(A+B)+cos(AB)=tanA


Prove that:
tanπ12+tanπ6+tanπ12tanπ6=1


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If x lies in the first quadrant and cosx=817, then prove that:

cos(π6+x)+cos(π4x)+cos(2π3x)=(312+12)2317

 


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Prove that (23+3)sinx+23cosx  lies between (23+15) and (23+15)


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If A + B + C = π, then tanA+tanB+tanCtanAtanBtanC is equal to

 

If cosP=17 and cosQ=1314, where P and Q both are acute angles. Then, the value of P − Q is

 


If cot (α + β) = 0, sin (α + 2β) is equal to


cos10+sin10cos10sin10=

 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


The maximum value of sin2(2π3+x)+sin2(2π3x) is


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


The value of sin(45° + θ) - cos(45° - θ) is ______.


If tanθ = ab, then bcos2θ + asin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + 3 tanθ tan2θ = 3, then θ = nπ3+π9


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.