मराठी

If tanθ = sinα-cosαsinα+cosα, then show that sinα + cosα = 2 cosθ. [Hint: Express tanθ = tan(α-π4)θ=α-π4] - Mathematics

Advertisements
Advertisements

प्रश्न

If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]

सिद्धांत

उत्तर

Given that: tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`

⇒ tanθ = `(tanalpha - 1)/(tan alpha + 1)`

= `(tanalpha - tan  pi/4)/(1 + tan  pi/4  tan alpha)` 

⇒ tanθ = `tan(alpha - pi/4)`

∴  θ =  `alpha - pi/4`

⇒ cosθ = `cos(alpha - pi/4)`

⇒ cosθ = `cos alpha cos  pi/4 + sin alpha sin  pi/4`

⇒ cosθ = `cos alpha . 1/sqrt(2) + sin alpha . 1/sqrt(2)`

⇒ `sqrt(2) cos theta` = cosα + sinα

⇒ sinα + cosα = `sqrt(2) cos theta`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 14 | पृष्ठ ५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


Write the maximum value of 12 sin x − 9 sin2 x


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×