Advertisements
Advertisements
प्रश्न
The value of tan3A - tan2A - tanA is equal to ______.
पर्याय
tan3A tan2A tanA
-tan3A tan2A tanA
tanA tan2A - tan2A tan3A - tan3A tanA
None of these
उत्तर
The value of tan 3A - tan 2A - tan A is equal to tan3A tan2A tanA.
Explanation:
tan3A tan2A tanA
The given expression is tan3A - tan2A - tanA
tan3A = tan(2A + A)
⇒ tan3A = `(tan2"A" + tan"A")/(1 - tan2"A" tan"A")`
⇒ tan3A(1 - tan2A tanA) = tan2A + tanA
⇒ tan3A - tan3A tan2A tanA = tan2A + tanA
⇒ tan3A - tan2A - tanA = tan3A tan2A tanA
APPEARS IN
संबंधित प्रश्न
Find the value of: sin 75°
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that:
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin α + sin β = a and cos α + cos β = b, show that
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.