Advertisements
Advertisements
प्रश्न
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
पर्याय
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{12}\]
उत्तर
60⁰ = \[\frac{\pi}{3}\]
Hence, `tan p=4sqrt3,tanQ=(3sqrt3)/14`
`cos(P-Q)= cosP cosQ+sinP sinQ`
`=1/7xx13/14+(4sqrt3)/7xx(3sqrt3)/14`
`=(13+36)/98`
`=49/98`
`thereforecos(P-Q)=1/2`
`=>P-Q=cos^(-1) 1/2`
`=>P-Q=60^circ`
Hence, the correct answer is option B.
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: sin 75°
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that:
Prove that:
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Prove that:
Prove that:
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Show that sin 100° − sin 10° is positive.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
tan 3A − tan 2A − tan A =
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
The value of tan3A - tan2A - tanA is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`