मराठी

The Value of Cos (36° − A) Cos (36° + A) + Cos (54° + A) Cos (54° − A) is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is

पर्याय

  • sin 2A

  • cos 2A

  • cos 3A

  • sin 3A

MCQ

उत्तर

cos 2A

cos(36A)cos(36+A)+cos(54+A)cos(54A)

=cos(36A)cos(36+A)+sin[90(54+A)]sin[90(54A)][ Since sin(90θ)=cosθ]

=cos(36A)cos(36+A)+sin(36A)sin(36+A)

=cos(36+A36+A)[ Using cos(AB) formula ]

=cos2A

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 16 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: cos(π4×x)cos(π4-y)-sin(π4- x)sin(π4 -y)= sin(x+y)


Prove the following:

cos(π+x)cos(-x)sin(π-x)cos(π2+x)= cot2x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

sinx-sin3xsin2x-cos2x= 2sinx


Prove the following:

tan4x=4tanx(1-tan2x)1-6tan2x+tan4x


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove that: (cosx-cosy)2+(sinx-siny)2=4sin2 x-y2


Prove that: (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A + B)


 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
sin (A + B)


If sinA=12,cosB=1213, where π2< A < π and 3π2 < B < 2π, find tan (A − B).


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that: sin(A+B)+sin(AB)cos(A+B)+cos(AB)=tanA


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

Prove that:

1sin(xa)cos(xb)=cot(xa)+tan(xb)cos(ab)

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If angle θ  is divided into two parts such that the tangents of one part is λ times the tangent of other, and ϕ is their difference, then show thatsinθ=λ+1λ1sinϕ

 

If tanθ=sinαcosαsinα+cosα , then show that sinα+cosα=2cosθ.


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If x cos θ = y cos (θ+2π3)=zcos(θ+4π3)then write the value of 1x+1y+1z 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = k+1k-1 sin Φ


If sin(x+y)sin(x-y)=a+ba-b, then show that tanxtany=ab [Hint: Use Componendo and Dividendo].


The value of tan 75° - cot 75° is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanθ = ab, then bcos2θ + asin2θ is equal to ______.


Given x > 0, the values of f(x) = -3cos3+x+x2 lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + 3 tanθ tan2θ = 3, then θ = nπ3+π9


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.