मराठी

Prove the following: sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x

बेरीज

उत्तर

L.H.S. = sin 2x + 2 sin 4x + sin 6x

= [sin 2x + sin 6x] + 2 sin 4x

= `2sin ((6x + 2x)/2)cos ((6x - 2x)/2) + 2sin 4x`

`[∵ sin A + B = 2 sin ((A+ B)/2) cos ((A - B)/2)]`

= 2 sin 4x cos (– 2x) + 2 sin 4x

= 2 sin 4x cos 2x + 2 sin 4x

= 2 sin 4x (cos 2x + 1)

= 2 sin 4x (2 cos2 x – 1 + 1)

= 2 sin 4x (2 cos2 x)

= 4cos2 x sin 4x

= R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise 3.3 [पृष्ठ ७३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise 3.3 | Q 14 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If A + B = C, then write the value of tan A tan B tan C.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If sinθ + cosθ = 1, then find the general value of θ.


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×