मराठी

Prove that: sin 3x + sin 2x – sin x = 4sin x cos x2cos 3x2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`

बेरीज

उत्तर

L.H.S. = sin 3x + (sin 2x – sin x)

= `2sin  (3x)/2  cos  (3x)/2 + 2  cos  (2x + x)/2  sin  (2x - x)/2`   `[∵ sin A = 2sin  A/2  cos  A/2]`

= `2 sin  (3x)/2  cos  (3x)/2  +2cos  (3x)/2  sin  (x)/2` 

= `2cos   (3x)/2 [sin  (3x)/2 + sin  x/2 ]`

=  `2cos   (3x)/2 [(2sin  (3x)/2 + x/2)/2  (cos  (3x)/2 - x/2)/2]`

= `2cos  (3x)/3 [2sin x cos  x/2]`

= `4 sin x cos  x/2 cos  (3x)/2` 

=  R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Miscellaneous Exercise [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Miscellaneous Exercise | Q 7 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: sin 75°


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

If cot (α + β) = 0, sin (α + 2β) is equal to


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


The value of tan 75° - cot 75° is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×