Advertisements
Advertisements
प्रश्न
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
उत्तर
\[\text{ Given }: \]
\[x \cos\theta = y\left( \cos\theta\cos\frac{2\pi}{3} - \sin\theta \sin\frac{2\pi}{3} \right) = z\left( \cos\theta\cos\frac{4\pi}{3} - \sin\theta \sin\frac{4\pi}{3} \right)\]
\[ \Rightarrow x\cos\theta = y\left( - \frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta \right) = z\left( - \frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta \right) \]
\[ \Rightarrow x = \frac{y}{2}\left( - 1 - \sqrt{3}\tan\theta \right) = \frac{z}{2}\left( - 1 + \sqrt{3}\tan\theta \right)\]
\[x = \frac{y}{2}\left( - 1 - \sqrt{3}\tan\theta \right)\]
\[z = \frac{y\left( - 1 - \sqrt{3}\tan\theta \right)}{\left( - 1 + \sqrt{3}\tan\theta \right)}\]
\[\text{ Now }, \]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{2}{y\left( - 1 - \sqrt{3}\tan\theta \right)} + \frac{1}{y} + \frac{\left( - 1 + \sqrt{3}\tan\theta \right)}{y\left( - 1 - \sqrt{3}\tan\theta \right)}\]
\[ = \frac{2 + \left( - 1 - \sqrt{3}\tan\theta \right) + \left( - 1 + \sqrt{3}\tan\theta \right)}{y\left( - 1 - \sqrt{3}\tan\theta \right)}\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Find the value of: sin 75°
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If A + B = C, then write the value of tan A tan B tan C.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.