मराठी

Prove the following: sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

बेरीज

उत्तर

L.H.S.

= sin (n + 1)x sin (n + 2) x + cos (n + 1)x cos (n + 2)x

Let (n + 2)x = A, (n + 1) x = B

= sin B sin A + cos B cos A

= cos A cos B + sin A sin B

= cos (A – B) = cos [(n + 2) x – (n + 1)x]

[∵ By keeping the values of A and B]

= cos (nx + 2x – nx –x)

= cos x = R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise 3.3 [पृष्ठ ७३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise 3.3 | Q 10 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the value of: tan 15°


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Write the maximum value of 12 sin x − 9 sin2 x


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If cot (α + β) = 0, sin (α + 2β) is equal to


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If sinx + cosx = a, then sin6x + cos6x = ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×