Advertisements
Advertisements
प्रश्न
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
उत्तर
Given that: cotθ + tanθ = 2cosecθ
⇒ `costheta/sintheta + sintheta/costheta = 2/sintheta`
⇒ `(cos^2theta + sin^2theta)/(sintheta cos theta) = 2/sintheta`
⇒ `1/(sintheta costheta) = 2/sintheta`
⇒ 2sinθ cosθ = sinθ
⇒ 2sinθ cosθ – sinθ = 0
⇒ sinθ(2cosθ – 1) = 0
⇒ sinθ ≠ 0 or 2cosθ – 1 = 0 or cosθ = `1/2`
⇒ cosθ = `cos pi/3`
∴ θ = `2"n"pi +- pi/3`
Hence, the general value of θ is `2"n"pi +- pi/3`.
APPEARS IN
संबंधित प्रश्न
Find the value of: tan 15°
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that:
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum value of 12 sin x − 9 sin2 x.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
The value of tan 75° - cot 75° is equal to ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`