मराठी

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.

बेरीज

उत्तर

2sin2θ = 3cosθ

We know that,

sin2θ = 1 – cos2θ

Given that,

2sin2θ = 3 cosθ

2 – 2cos2θ = 3cosθ

2cos2θ + 3cosθ – 2 = 0

(cosθ + 2)(2cosθ – 1) = 0

Therefore,

cosθ = `1/2 = cos  pi/3`

θ = `pi/3` or `2π  –  pi/3`

θ = `pi/3, (5pi)/3`

Therefore, 2(1 – cos2θ) = 3cosθ

⇒ 2 – 2cos2θ = 3cosθ

⇒ 2cos2θ + 3cosθ – 2 = 0

⇒ 2cos2θ + 4cosθ – cosθ – 2 = 0

⇒ 2cosθ(cosθ + 2) + 1(cosθ + 2) = 0

⇒ (2cosθ + 1)(cosθ + 2) = 0

Since, cosθ ∈ [–1, 1], for any value θ.

So, cosθ ≠ –2

Therefore,

2cosθ – 1 = 0

⇒ cosθ = `1/2`

= `pi/3` or `2π  –  pi/3`

θ = `π/3, (5pi)/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 18 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×