Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[\cos x + \cos 2x + \cos 3x = 0\]
Now,
\[(\cos x + \cos3x) + \cos2x = 0\]
\[ \Rightarrow 2 \cos \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) + \cos2x = 0\]
\[ \Rightarrow 2 \cos2x \cos x + \cos2x = 0\]
\[ \Rightarrow \cos2x ( 2 \cos x + 1) = 0\]
\[x = 2m\pi \pm \frac{2\pi}{3}, m \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to