मराठी

Solve the Following Equation: Cos X + Cos 2 X + Cos 3 X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]
बेरीज

उत्तर

\[\cos x + \cos 2x + \cos 3x = 0\]

Now,

\[(\cos x + \cos3x) + \cos2x = 0\]
\[ \Rightarrow 2 \cos \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) + \cos2x = 0\]
\[ \Rightarrow 2 \cos2x \cos x + \cos2x = 0\]
\[ \Rightarrow \cos2x ( 2 \cos x + 1) = 0\]

\[\Rightarrow \cos 2x = 0\] or,
\[2 \cos x + 1 = 0\]
\[\Rightarrow \cos 2x = \cos \frac{\pi}{2}\] or
\[\cos x = - \frac{1}{2} = \cos \frac{2\pi}{3}\]
\[\Rightarrow 2x = (2n + 1) \frac{\pi}{2}\],
\[n \in Z\] or

\[x = 2m\pi \pm \frac{2\pi}{3}, m \in Z\]

\[\Rightarrow x = (2n + 1)\frac{\pi}{4}, n \in Z\]
\[x = 2m\pi \pm \frac{2\pi}{3}, m \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 4.1 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×