Advertisements
Advertisements
प्रश्न
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
पर्याय
- \[\frac{5}{3}\]
- \[\frac{3}{5}\]
- \[- \frac{3}{5}\]
- \[- \frac{5}{3}\]
उत्तर
We have:
\[\text{ cosec }x - \cot x = \frac{1}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{\text{ cosec }x - \cot x} = 2\]
\[ \Rightarrow \frac{{\text{ cosec }}^2 x - \cot^2 x}{\text{ cosec }x - \cot x} = 2\]
\[ \Rightarrow \frac{\left(\text{ cosec }x + \cot x \right)\left( \text{ cosec }x - \cot x \right)}{\left(\text{ cosec }x - \cot x \right)} = 2\]
\[ \therefore\text{ cosec }x +\cot x = 2 \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\text{ cosec} x = \frac{1}{2} + 2\]
\[ \Rightarrow 2 \text{ cosec} x = \frac{5}{2}\]
\[ \Rightarrow\text{ cosec} x = \frac{5}{4}\]
\[ \Rightarrow \frac{1}{\sin x}=\frac{5}{4}\]
\[ \Rightarrow \sin x=\frac{4}{5}\]
\[\text{ Now, }0 < \theta < \frac{\pi}{2}\]
\[ \therefore \cos\theta = \sqrt{1 - \sin^2 \theta}\]
\[ = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ = \frac{3}{5}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{a}{b},\] show that
Prove that:
Prove that:
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to