मराठी

If C O S E C X − Cot X = 1 2 , 0 < X < π 2 , - Mathematics

Advertisements
Advertisements

प्रश्न

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

पर्याय

  • \[\frac{5}{3}\]

     

  • \[\frac{3}{5}\]

     

  • \[- \frac{3}{5}\]

     

  • \[- \frac{5}{3}\]

     

MCQ

उत्तर

\[\frac{3}{5}\]

We have: 

\[\text{ cosec }x - \cot x = \frac{1}{2} \left( 1 \right)\]

\[ \Rightarrow \frac{1}{\text{ cosec }x - \cot x} = 2\]

\[ \Rightarrow \frac{{\text{ cosec }}^2 x - \cot^2 x}{\text{ cosec }x - \cot x} = 2\]

\[ \Rightarrow \frac{\left(\text{ cosec }x + \cot x \right)\left( \text{ cosec }x - \cot x \right)}{\left(\text{ cosec }x - \cot x \right)} = 2\]

\[ \therefore\text{ cosec }x +\cot x = 2 \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\text{ cosec} x = \frac{1}{2} + 2\]

\[ \Rightarrow 2 \text{ cosec} x = \frac{5}{2}\]

\[ \Rightarrow\text{ cosec} x = \frac{5}{4}\]

\[ \Rightarrow \frac{1}{\sin x}=\frac{5}{4}\]

\[ \Rightarrow \sin x=\frac{4}{5}\]
\[\text{ Now, }0 < \theta < \frac{\pi}{2}\]
\[ \therefore \cos\theta = \sqrt{1 - \sin^2 \theta}\]
\[ = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ = \frac{3}{5}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 12 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×