Advertisements
Advertisements
प्रश्न
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
पर्याय
- \[\frac{5\pi}{6}\]
- \[\frac{2\pi}{3}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{3}\]
उत्तर
We have:
\[\tan x + \sec x = \sqrt{3} \left[ 0 < x < \pi \right]\]
\[ \Rightarrow sec x + \tan x = \sqrt{3}\]
\[ \Rightarrow \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \sqrt{3}\]
\[ \Rightarrow 1 + \sin x=\sqrt{3}\cos x\]
\[\Rightarrow \left( 1 + \sin x \right)^2 = \left( \sqrt{3} \cos x \right)^2 \]
\[ \Rightarrow 1 + \sin^2 x + 2\sin x = 3 \cos^2 x\]
\[ \Rightarrow 1 + \sin^2 x + 2\sin x = 3(1 - \sin^2 x)\]
\[ \Rightarrow 4 \sin^2 x + 2\sin x = 2\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow \sin x = - 1, \frac{1}{2}\]
\[\text{ Since }0 < x < \pi, \sin x \text{ cannot be negative .} \]
\[ \therefore \sin x = \frac{1}{2}\]
\[ \therefore x = \frac{\pi}{6} \]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆ABC, prove that:
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the general solutions of tan2 2x = 1.
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.