Advertisements
Advertisements
प्रश्न
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
पर्याय
- \[\cot\frac{x}{2}\]
- \[\tan\frac{x}{2}\]
- \[\cot\frac{x}{2} + \tan\frac{x}{2}\]
- \[\cot\frac{x}{2} - \tan\frac{x}{2}\]
उत्तर
We have:
\[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)^2}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)} \left[ \because 0 < x < \frac{\pi}{2} \Rightarrow 0 < \frac{x}{2} < \frac{\pi}{4}, 0\text{ to }\frac{\pi}{4} \cos x\text{ is greater than }\sin x \right]\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} + \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}}{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} - \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}} \]
\[ \Rightarrow \frac{1 + y}{1 - y} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \]
Comparing both the sides:
\[y = \tan\frac{x}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`