मराठी

If 0 < X < π 2 , and If Y + 1 1 − Y = √ 1 + Sin X 1 − Sin X , Then Y is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to

पर्याय

  • \[\cot\frac{x}{2}\]

     

  • \[\tan\frac{x}{2}\]

     

  • \[\cot\frac{x}{2} + \tan\frac{x}{2}\]

     

  • \[\cot\frac{x}{2} - \tan\frac{x}{2}\]

     

MCQ

उत्तर

\[\tan\frac{x}{2}\]
We have: 
\[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)^2}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)} \left[ \because 0 < x < \frac{\pi}{2} \Rightarrow 0 < \frac{x}{2} < \frac{\pi}{4}, 0\text{ to }\frac{\pi}{4} \cos x\text{ is greater than }\sin x \right]\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} + \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}}{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} - \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}} \]
\[ \Rightarrow \frac{1 + y}{1 - y} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \]
Comparing both the sides: 
\[y = \tan\frac{x}{2}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 5 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is incorrect?


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×