मराठी

Solve the Following Equation: 3sin2x – 5 Sin X Cos X + 8 Cos2 X = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2

बेरीज

उत्तर

\[3 \sin^2 x - 5 \sin x \cos x + 8 \cos^2 x = 2\]
\[ \Rightarrow 3 \sin^2 x - 5 \sin x \cos x + 3 \cos^2 x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3\left( \sin^2 x + \cos^2 x \right) - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3 - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 5 \cos^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5\left( 1 - \sin^2 x \right) - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 - 5 \sin^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 \sin^2 x + 5 \sin x \cos x - 6 = 0\]
\[\text{ Dividing by }\cos^2 x,\text{ we get }\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 \sec^2 x = 0\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 - 6 \tan^2 x = 0\]
\[ \Rightarrow - \tan^2 x + 5 \tan x - 6 = 0\]
\[ \Rightarrow \tan^2 x - 5 \tan x + 6 = 0\]
\[ \Rightarrow \tan^2 x - 3 \tan x - 2 \tan x + 6 = 0\]
\[ \Rightarrow \left( \tan x - 3 \right)\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \left( \tan x - 3 \right) = 0\text{ or }\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \tan x = 3\text{ or }\tan x = 2\]
\[ \Rightarrow x = n\pi + \tan^{- 1} 3\text{ or }x = n\pi + \tan^{- 1} 2, n \in \mathbb{Z}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 9 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×