Advertisements
Advertisements
प्रश्न
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
उत्तर
\[3 \sin^2 x - 5 \sin x \cos x + 8 \cos^2 x = 2\]
\[ \Rightarrow 3 \sin^2 x - 5 \sin x \cos x + 3 \cos^2 x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3\left( \sin^2 x + \cos^2 x \right) - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3 - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 5 \cos^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5\left( 1 - \sin^2 x \right) - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 - 5 \sin^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 \sin^2 x + 5 \sin x \cos x - 6 = 0\]
\[\text{ Dividing by }\cos^2 x,\text{ we get }\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 \sec^2 x = 0\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 - 6 \tan^2 x = 0\]
\[ \Rightarrow - \tan^2 x + 5 \tan x - 6 = 0\]
\[ \Rightarrow \tan^2 x - 5 \tan x + 6 = 0\]
\[ \Rightarrow \tan^2 x - 3 \tan x - 2 \tan x + 6 = 0\]
\[ \Rightarrow \left( \tan x - 3 \right)\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \left( \tan x - 3 \right) = 0\text{ or }\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \tan x = 3\text{ or }\tan x = 2\]
\[ \Rightarrow x = n\pi + \tan^{- 1} 3\text{ or }x = n\pi + \tan^{- 1} 2, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.