मराठी

Solve the Following Equation: 3 – 2 Cos X – 4 Sin X – Cos 2x + Sin 2x = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0

बेरीज

उत्तर

\[3 - 2 \cos x - 4 \sin x - \cos 2x + \sin 2x = 0\]
\[ \Rightarrow 3 - 2 \cos x - 4 \sin x - \left( 1 - 2 \sin^2 x \right) + 2 \sin x \cos x = 0\]
\[ \Rightarrow 3 - 2 \cos x - 4 \sin x - 1 + 2 \sin^2 x + 2 \sin x \cos x = 0\]
\[ \Rightarrow \left( 2 \sin^2 x - 4 \sin x + 2 \right) + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow 2\left( \sin^2 x - 2 \sin x + 1 \right) + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow 2 \left( \sin x - 1 \right)^2 + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow \left( \sin x - 1 \right)\left( 2 \sin x - 2 + 2 \cos x \right) = 0\]
\[ \Rightarrow 2\left( \sin x - 1 \right)\left( \sin x + \cos x - 1 \right) = 0\]
\[ \Rightarrow \left( \sin x - 1 \right) = 0\text{ or }\left( \sin x + \cos x - 1 \right) = 0\]
\[ \Rightarrow \sin x = 1\text{ or }\sin x + \cos x = 1\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\sin \frac{\pi}{4} \sin x + \cos \frac{\pi}{4}\cos x = \cos \frac{\pi}{4}\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}\text{ or }x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}\text{ or }x = 2n\pi + \frac{\pi}{2}\text{ or }x = 2n\pi, n \in \mathbb{Z}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 8 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×