Advertisements
Advertisements
प्रश्न
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
उत्तर
\[ 4\pi = 720^\circ, \frac{3\pi}{2} = 270^\circ, \frac{5\pi}{6} = 150^\circ, \frac{2\pi}{3} = 120^\circ\]
LHS = \[\tan\left( 720^\circ \right) - \cos\left( 270^\circ \right) - \sin\left( 150^\circ \right) \cos\left( 120^\circ \right)\]
\[ = \tan\left( 90^\circ \times 8 + 0^\circ \right) - \cos\left( 90^\circ \times 3 + 0^\circ \right) - \sin\left( 90^\circ \times 1 + 60^\circ \right) \cos\left( 90^\circ \times 1 + 30^\circ \right)\]
\[ = \tan\left( 0^\circ \right) - \sin\left( 0^\circ \right) - \cos\left( 60^\circ \right) \left[ - \sin\left( 30^\circ \right) \right]\]
\[ = \tan\left( 0^\circ \right) - \sin\left( 0^\circ \right) + \cos\left( 60^\circ \right) \sin\left( 30^\circ \right)\]
\[ = 0 - 0 + \frac{1}{2} \times \frac{1}{2}\]
\[ = \frac{1}{4}\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
The smallest value of x satisfying the equation
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.