मराठी

The Smallest Value of X Satisfying the Equation √ 3 ( Cot X + Tan X ) = 4 is - Mathematics

Advertisements
Advertisements

प्रश्न

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

पर्याय

  • \[2\pi/3\]

     

  • `pi/3`

  • `pi/6`

  • `pi/12`

MCQ
बेरीज

उत्तर

\[\pi/6\]
Given:

\[\sqrt{3}(\cot x + \tan x) = 4\]

\[ \Rightarrow \sqrt{3} \left( \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} \right) = 4\]

\[ \Rightarrow \sqrt{3} ( \cos^2 x + \sin^2 x) = 4 \sin x \cos x\]

\[ \Rightarrow \sqrt{3} = 2 \sin2x [\sin2x = 2 \sin x \cos x]\]

\[ \Rightarrow \sin2x = \frac{\sqrt{3}}{2}\]

\[ \Rightarrow \sin2x = \sin \frac{\pi}{3}\]

\[ \Rightarrow 2x = n\pi + ( - 1 )^n \frac{\pi}{3}, n \in Z\]

\[ \Rightarrow x = \frac{n\pi}{2} + ( - 1 )^n \frac{\pi}{6}, n \in Z\]
To obtain the smallest value of x, we will put n = 0 in the above equation.
Thus, we have:
`x=pi/6`
Hence, the smallest value of x is 
`pi/6`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 1 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan θ + sec θ =ex, then cos θ equals


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×