Advertisements
Advertisements
प्रश्न
If \[\tan x = \frac{a}{b},\] show that
उत्तर
LHS:
\[\frac{a\sin x - b\cos x}{a\sin x + b\cos x}\]
Dividing by \[b\cos x: \]
\[ = \frac{\frac{a\tan x}{b} - 1}{\frac{a\tan x}{b} + 1}\]
Substituting the value of \[\tan x\]
\[ = \frac{a^2 - b^2}{a^2 + b^2}\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
In a ∆ABC, prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the set of values of a for which the equation
Write the solution set of the equation
The smallest value of x satisfying the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.