मराठी

Solve the following equation: cos x cos 2 x cos 3 x = 1 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]
बेरीज

उत्तर

\[ \cos x \cos2x \cos3x = \frac{1}{4}\]
\[ \Rightarrow \left[ \frac{\cos\left( x + 2x \right) + \cos\left( 2x - x \right)}{2} \right]\cos3x = \frac{1}{4}\]
\[ \Rightarrow 2\left[ \cos3x + \cos x \right]\cos3x = 1\]
\[ \Rightarrow 2 \cos^2 3x + 2\cos x \cos3x - 1 = 0\]
\[ \Rightarrow 2 \cos^2 3x - 1 + 2\cos x \cos3x = 0\]
\[ \Rightarrow \cos6x + \cos4x + \cos2x = 0\]
\[ \Rightarrow \cos6x + \cos2x + \cos4x = 0\]
\[ \Rightarrow 2\cos4xcos2x + \cos4x = 0\]
\[ \Rightarrow \cos4x\left( 2\cos2x + 1 \right) = 0\]
\[ \Rightarrow \cos4x = 0 or 2\cos2x + 1 = 0\]
\[ \Rightarrow \cos4x = 0 or \cos2x = \frac{- 1}{2}\]
\[ \Rightarrow \cos4x = \cos\frac{\pi}{2} or \cos2x = \cos\frac{2\pi}{3}\]
\[ \Rightarrow 4x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z or 2x = 2m\pi \pm \frac{2\pi}{3}, m \in Z\]
\[ \Rightarrow x = \left( 2n + 1 \right)\frac{\pi}{8}, n \in Z or x = m\pi \pm \frac{\pi}{3}, m \in Z\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 4.4 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×