Advertisements
Advertisements
प्रश्न
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
पर्याय
- \[\left( - \pi/4, \pi/4 \right)\]
- \[\left( \pi/4, 3\pi/4 \right)\]
- \[\left( 3\pi/4, 5\pi/4 \right)\]
- \[\left( 5\pi/4, 7\pi/4 \right)\]
उत्तर
\[\left( 5\pi/4, 7\pi/4 \right)\]
Given:
\[\cos^2 x + \sin x + 1 = 0\]
\[ \Rightarrow (1 - \sin^2 x) + \sin x + 1 = 0\]
\[ \Rightarrow 1 - \sin^2 x + \sin x + 1 = 0\]
\[ \Rightarrow \sin^2 x - \sin x - 2 = 0\]
\[ \Rightarrow \sin^2 x - 2 \sin x + \sin x - 2 = 0\]
\[ \Rightarrow \sin x (\sin x - 2) + 1 (\sin x - 2) = 0\]
\[ \Rightarrow (\sin x - 2) (\sin x + 1) = 0\]
\[\Rightarrow \sin x = 2\] or \[\sin x = - 1\]
\[\sin x = 2\] is not possible.
\[\Rightarrow \sin x = - 1\]
∴ \[\sin x = \sin \frac{3\pi}{2}\]
Hence, x lies in \[\left( \frac{5\pi}{4}, \frac{7\pi}{4} \right)\].
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{a}{b},\] show that
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
In a ∆ABC, prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If tan θ + sec θ =ex, then cos θ equals
If sec x + tan x = k, cos x =
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
The minimum value of 3cosx + 4sinx + 8 is ______.