Advertisements
Advertisements
प्रश्न
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
उत्तर
\[LHS = \left| \sqrt{\frac{1 - \sin x}{1 + \sin x}} \right| + \left| \sqrt{\frac{1 + \sin x}{1 - \sin x}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)\left( 1 + \sin x \right)}{\left( 1 - \sin x \right)\left( 1 + \sin x \right)}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)\left( 1 + \sin x \right)}{\left( 1 - \sin x \right)\left( 1 + \sin x \right)}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)^2}{1 - \sin^2 x}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)^2}{\cos^2 x}} \right|\]
\[ = \left| \frac{1 - \sin x}{\cos x} \right| + \left| \frac{1 + \sin x}{\cos x} \right|\]
\[ = \left| \frac{1 - \sin x + 1 + \sin x}{\cos x} \right|\]
\[ = \left| \frac{2}{\cos x} \right|\]
\[ = - \frac{2}{\cos x} \left[ \because \frac{\pi}{2} < x < \pi \text{ and in the second quadrant, }\cos x \text{ is negative }\right]\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
If \[\tan x = \frac{a}{b},\] show that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
In a ∆ABC, prove that:
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.