Advertisements
Advertisements
प्रश्न
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
उत्तर
Given equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Now,
\[(1 - \cos^2 x) - \cos x = \frac{1}{4}\]
\[ \Rightarrow 4 - 4 \cos^2 x - 4 \cos x = 1\]
\[ \Rightarrow 4 \cos^2 x + 4 \cos x - 3 = 0\]
\[ \Rightarrow 4 \cos^2 x + 6 \cos x - 2 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x (2 \cos x + 3) - 1 (2 \cos x + 3) = 0\]
\[ \Rightarrow (2 \cos x + 3) ( 2 \cos x - 1) = 0\]
Here,
\[2 \cos x + 3 = 0\]
Or,
\[2 \cos x - 1 = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\]
\[ \Rightarrow \cos x = \cos \frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}\]
Taking positive sign,
\[x = \frac{7\pi}{3}, \frac{13\pi}{3}, \frac{19\pi}{3}, . . .\]
Taking negative sign,
`x=(5x)/3` and `(7x)/3`
will satisfy the given condition, i.e., x in [0, 2π].
Hence, two values will satisfy the given equation.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of points of intersection of the curves
Write the solution set of the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.