Advertisements
Advertisements
प्रश्न
Write the solution set of the equation
उत्तर
Given:
\[(2 \cos x + 1) ( 4 \cos x + 5) = 0\]
Now,
\[2 \cos x + 1 = 0\] or \[4 \cos x + 5 = 0\]
Thus, we have:
\[\cos x = - \frac{1}{2} \]
\[ \Rightarrow \cos x = \cos\frac{2\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{2\pi}{3}\]
By putting n = 0 and n = 1 in the above equation, we get:
For the other value of n, x will not satisfy the given condition.
∴ \[\left[ 0, 2\pi \right]\] and \[\frac{4\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
In a ∆ABC, prove that:
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the set of values of a for which the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[4 \sin^2 x = 1\], then the values of x are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.