मराठी

Write the Solution Set of the Equation ( 2 Cos X + 1 ) ( 4 Cos X + 5 ) = 0 in the Interval [0, 2π]. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].
बेरीज

उत्तर

Given: 
\[(2 \cos x + 1) ( 4 \cos x + 5) = 0\]
Now,
\[2 \cos x + 1 = 0\] or \[4 \cos x + 5 = 0\]

\[\Rightarrow \cos x = - \frac{1}{2}\] or \[\cos x = - \frac{5}{4}\]
\[\cos x = - \frac{5}{4}\] is not possible.
Thus, we have:

\[\cos x = - \frac{1}{2} \]

\[ \Rightarrow \cos x = \cos\frac{2\pi}{3}\]

\[ \Rightarrow x = 2n\pi \pm \frac{2\pi}{3}\]
By putting n = 0 and n = 1 in the above equation, we get:

\[x = \frac{2\pi}{3}\] or \[x = \frac{2\pi}{3}\]  in the interval 
\[\left[ 0, 2\pi \right]\]
For the other value of n, x will not satisfy the given condition.
∴ \[\left[ 0, 2\pi \right]\] and \[\frac{4\pi}{3}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.2 | Q 9 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan θ + sec θ =ex, then cos θ equals


Which of the following is incorrect?


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Which of the following is correct?


Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×