मराठी

If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.

पर्याय

  • a2 + b2 + 2ac = 0

  • a2 – b2 + 2ac = 0

  • a2 + c2 + 2ab = 0

  • a2 – b2 – 2ac = 0

MCQ
रिकाम्या जागा भरा

उत्तर

If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation a2 – b2 + 2ac = 0.

Explanation:

Given that sin θ and cos θ are the roots of the equation ax2 – bx + c = 0

So sin θ + cos θ = `b/a` and sin θ cos θ = `c/a`

Using the identity (sinθ + cos θ)2 = sin2θ + cos2θ + 2 sin θ cos θ

We have `b^2/a^2 = 1 + (2c)/a`

or a2 – b2 + 2ac = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Solved Examples [पृष्ठ ४८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Solved Examples | Q 16 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Write the general solutions of tan2 2x = 1.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×