Advertisements
Advertisements
प्रश्न
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
उत्तर
\[90^\circ = \frac{\pi}{2}\]
We have:
\[ x \cot\left( 90^\circ + \theta \right) + \tan\left( 90^\circ + \theta \right) \sin \theta + cosec\left( 90^\circ + \theta \right) = 0\]
\[ \Rightarrow x \left[ - \tan \theta \right] + \left[ - \cot \theta \right] \sin \theta + \sec \theta = 0\]
\[ \Rightarrow - x \tan \theta - \cot \theta \sin \theta + \sec \theta = 0 \]
\[ \Rightarrow - x \times \frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta} \times \sin \theta + \frac{1}{\cos \theta} = 0 \]
\[ \Rightarrow - x \times \frac{\sin \theta}{\cos \theta} - \cos\theta + \frac{1}{\cos \theta} = 0 \]
\[ \Rightarrow \frac{- x \sin \theta - \cos^2 \theta + 1}{\cos \theta} = 0 \]
`=>-xsintheta-cos^2theta+1=0`
`=>-xsintheta = - sin^2theta ...[∵ 1 - cos^2theta = sin^2theta]`
`=>x=(-sin^2theta)/(-sintheta)`
`=>x=sintheta`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove that:
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the set of values of a for which the equation
Write the solution set of the equation
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The smallest positive angle which satisfies the equation
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to