Advertisements
Advertisements
प्रश्न
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
उत्तर
\[90^\circ = \frac{\pi}{2}\]
We have:
\[ x \cot\left( 90^\circ + \theta \right) + \tan\left( 90^\circ + \theta \right) \sin \theta + cosec\left( 90^\circ + \theta \right) = 0\]
\[ \Rightarrow x \left[ - \tan \theta \right] + \left[ - \cot \theta \right] \sin \theta + \sec \theta = 0\]
\[ \Rightarrow - x \tan \theta - \cot \theta \sin \theta + \sec \theta = 0 \]
\[ \Rightarrow - x \times \frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta} \times \sin \theta + \frac{1}{\cos \theta} = 0 \]
\[ \Rightarrow - x \times \frac{\sin \theta}{\cos \theta} - \cos\theta + \frac{1}{\cos \theta} = 0 \]
\[ \Rightarrow \frac{- x \sin \theta - \cos^2 \theta + 1}{\cos \theta} = 0 \]
`=>-xsintheta-cos^2theta+1=0`
`=>-xsintheta = - sin^2theta ...[∵ 1 - cos^2theta = sin^2theta]`
`=>x=(-sin^2theta)/(-sintheta)`
`=>x=sintheta`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Prove that:
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.