Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[ \Rightarrow - 2 \sin \left( \frac{3x}{2} \right) \sin \left( \frac{- x}{2} \right) = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{3x}{2} \right)\]
\[ \Rightarrow 2 \sin \left( \frac{3x}{2} \right) \sin \left( \frac{x}{2} \right) = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{3x}{2} \right)\]
\[ \Rightarrow 2 \sin \left( \frac{x}{2} \right) \left[ \sin \left( \frac{3x}{2} \right) - \cos \left( \frac{3x}{2} \right) \right] = 0\]
⇒ \[\frac{x}{2} = n\pi\],
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation cos 4 x = cos 2 x
If \[\tan x = \frac{a}{b},\] show that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
Write the solution set of the equation
The smallest value of x satisfying the equation
If \[4 \sin^2 x = 1\], then the values of x are
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0