English

Solve the Following Equation: Cos X + Sin X = Cos 2 X + Sin 2 X - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]
Sum

Solution

\[\cos x + \sin x = \cos2x + \sin2x\]
\[\Rightarrow \cos x - \cos2x = \sin2x - \sin x\]
\[ \Rightarrow - 2 \sin \left( \frac{3x}{2} \right) \sin \left( \frac{- x}{2} \right) = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{3x}{2} \right)\]
\[ \Rightarrow 2 \sin \left( \frac{3x}{2} \right) \sin \left( \frac{x}{2} \right) = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{3x}{2} \right)\]
\[ \Rightarrow 2 \sin \left( \frac{x}{2} \right) \left[ \sin \left( \frac{3x}{2} \right) - \cos \left( \frac{3x}{2} \right) \right] = 0\]
\[\Rightarrow \sin \frac{x}{2} = 0\] or
\[\sin \frac{3x}{2} - \cos \frac{3x}{2} = 0\] 
\[\Rightarrow \sin \frac{x}{2} = \sin 0\] or
\[\sin \frac{3x}{2} = \cos \frac{3x}{2}\]

⇒ \[\frac{x}{2} = n\pi\],

\[n \in Z\] or
\[\cos \frac{3x}{2} = \cos \left( \frac{\pi}{2} - \frac{3x}{2} \right)\]
\[\Rightarrow x = 2n\pi, n \in Z\] or
\[\frac{3x}{2} = 2m\pi \pm \left( \frac{\pi}{2} - \frac{3x}{2} \right), m \in Z\]
⇒ \[x = 2n\pi, n \in Z\] or
\[\frac{3x}{2} = 2m\pi + \frac{\pi}{2} - \frac{3x}{2}, m \in Z\]  (Taking negative sign will give absurd result.)
\[x = 2n\pi, n \in Z\] or 
\[x = \frac{2m\pi}{3} + \frac{\pi}{6}, m \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 4.5 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation sin 2x + cos x = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×