Advertisements
Advertisements
Question
Solve the following equation:
Solution
\[ \Rightarrow - 2 \sin \left( \frac{3x}{2} \right) \sin \left( \frac{- x}{2} \right) = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{3x}{2} \right)\]
\[ \Rightarrow 2 \sin \left( \frac{3x}{2} \right) \sin \left( \frac{x}{2} \right) = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{3x}{2} \right)\]
\[ \Rightarrow 2 \sin \left( \frac{x}{2} \right) \left[ \sin \left( \frac{3x}{2} \right) - \cos \left( \frac{3x}{2} \right) \right] = 0\]
⇒ \[\frac{x}{2} = n\pi\],
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
Prove that
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
Write the solution set of the equation
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[4 \sin^2 x = 1\], then the values of x are
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2