Advertisements
Advertisements
Question
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
Options
- \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{4} + \frac{\pi}{3}, n \in Z\]
\[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} + \frac{\pi}{6}, n \in Z\]
- \[x = n\pi \pm \frac{\pi}{6}, n \in Z\]
\[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
Solution
\[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} - \frac{\pi}{6}, n \in Z\]
Given:
This equation is of the form
Let: a = r cos α and b = r sin α
Now,
\[r \cos\alpha \sin x + r \sin\alpha \cos x = \sqrt{3}\]
\[ \Rightarrow r \sin (x + \alpha) = \sqrt{3}\]
\[ \Rightarrow 2 \sin ( x + \alpha) = \sqrt{3}\]
\[ \Rightarrow \sin (x + \alpha) = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin (x + \alpha) = \sin \frac{\pi}{3}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{6} \right) = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{3} - \frac{\pi}{6} , n \in Z\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.