English

The General Value of X Satisfying the Equation √ 3 Sin X + Cos X = √ 3 - Mathematics

Advertisements
Advertisements

Question

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]

Options

  • \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{4} + \frac{\pi}{3}, n \in Z\]

     

  • \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} + \frac{\pi}{6}, n \in Z\]

  • \[x = n\pi \pm \frac{\pi}{6}, n \in Z\]

     

  • \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]

MCQ
Sum

Solution

\[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} - \frac{\pi}{6}, n \in Z\]
Given: 

\[\sqrt{3} \sin x + \cos x = \sqrt{3}\] ...(i)
This equation is of the form 
\[a \sin\theta + b \cos\theta = c\], where
\[a = \sqrt{3}, b = 1\] and \[c = \sqrt{3}\].
Let: a = r cos α and b = r sin α
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and 
\[\tan\alpha = \frac{b}{a} \Rightarrow \tan\alpha = \frac{1}{\sqrt{3}}\]
`=>alpha = pi/6` On putting \[a = \sqrt{3} = r \cos\alpha\] and \[b = 1 = r \sin\alpha\] in equation (i),  we get:
\[r \cos\alpha \sin x + r \sin\alpha \cos x = \sqrt{3}\]
\[ \Rightarrow r \sin (x + \alpha) = \sqrt{3}\]
\[ \Rightarrow 2 \sin ( x + \alpha) = \sqrt{3}\]
\[ \Rightarrow \sin (x + \alpha) = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin (x + \alpha) = \sin \frac{\pi}{3}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{6} \right) = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{3} - \frac{\pi}{6} , n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 8 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×