English

If C O S E C X + Cot X = 11 2 , Then Tan X = - Mathematics

Advertisements
Advertisements

Question

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 

Options

  • \[\frac{21}{22}\]

     

  • \[\frac{15}{16}\]

     

  • \[\frac{44}{117}\]

     

  • \[\frac{117}{44}\]

     

MCQ

Solution

\[\frac{44}{117}\]

We have:

\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]

\[ \Rightarrow \frac{1}{cosecx + \cot x} = \frac{2}{11}\]

\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosecx + \cot x} = \frac{2}{11}\]

\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]

\[ \therefore cosec A-\cot x = \frac{2}{11} \left( 2 \right)\]

Subtracting ( 2 ) from ( 1 ): 

\[2\cot x = \frac{11}{2} - \frac{2}{11}\]

\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]

\[ \Rightarrow 2\cot x = \frac{117}{22}\]

\[ \Rightarrow \cot x = \frac{117}{44}\]

\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]

\[ \Rightarrow \tan x = \frac{44}{117}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 13 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation sin 2x + cos x = 0


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is incorrect?


Which of the following is correct?


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

General solution of \[\tan 5 x = \cot 2 x\] is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×