Advertisements
Advertisements
Question
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Options
- \[\frac{21}{22}\]
- \[\frac{15}{16}\]
- \[\frac{44}{117}\]
- \[\frac{117}{44}\]
Solution
We have:
\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{cosecx + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosecx + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]
\[ \therefore cosec A-\cot x = \frac{2}{11} \left( 2 \right)\]
Subtracting ( 2 ) from ( 1 ):
\[2\cot x = \frac{11}{2} - \frac{2}{11}\]
\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]
\[ \Rightarrow 2\cot x = \frac{117}{22}\]
\[ \Rightarrow \cot x = \frac{117}{44}\]
\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]
\[ \Rightarrow \tan x = \frac{44}{117}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation sin 2x + cos x = 0
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
Prove that
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the set of values of a for which the equation
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the solution set of the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
If \[\cot x - \tan x = \sec x\], then, x is equal to
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
General solution of \[\tan 5 x = \cot 2 x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`