English

Solve the Following Equation: 2 Sin 2 X + √ 3 Cos X + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]
Sum

Solution

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 - 2 \cos^2 x + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 \cos^2 x - \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x - 2\sqrt{3} \cos x + \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x (\cos x - \sqrt{3}) + \sqrt{3} (\cos x - \sqrt{3}) = 0\]
\[ \Rightarrow (2 \cos x + \sqrt{3}) (\cos x - \sqrt{3}) = 0\]

⇒ \[(2 \cos x + \sqrt{3}) = 0\] or

\[(\cos x - \sqrt{3}) = 0\]
\[\cos x = \sqrt{3}\] is not possible.
 
\[\therefore 2 \cos x + \sqrt{3} = 0 \]
\[ \Rightarrow \cos x = - \frac{\sqrt{3}}{2} \]
\[ \Rightarrow \cos x = \cos \frac{5\pi}{6} \]
\[ \Rightarrow x = 2n\pi \pm \frac{5\pi}{6}, n \in\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 3.3 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation cos 4 x = cos 2 x


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×